The SUN
The Sun is now in the quietest phase of its 11-year activity cycle, the solar minimum - in fact, it has been unusually quiet this year - with over 200 days so far with no observed sunspots. The solar wind has also dropped to its lowest levels in 50 years. Scientists are unsure of the significance of this unusual calm, but are continually monitoring our closest star with an array of telescopes and satellites. Seen below are some recent images of the Sun in more active times.
Solar flares produce seismic waves in the Sun's interior that closely resemble those created by earthquakes on our planet. On May 27, 1998, researchers observed this flare-generated solar quake that contained about 40,000 times the energy released in the great earthquake that devastated San Francisco in 1906, equivalent to an 11.3 magnitude earthquake, scientists calculated. Over the course of an hour, the solar waves traveled for a distance equal to 10 Earth diameters before fading into the fiery background of the Sun's photosphere. Unlike water ripples that travel outward at a constant velocity, the solar waves accelerated from an initial speed of 22,000 miles per hour to a maximum of 250,000 miles per hour before disappearing. (Courtesy of SOHO/EIT consortium. SOHO is a project of international cooperation between ESA and NASA)

Detailed closeup of magnetic structures on the Sun's surface, seen in the H-alpha wavelength on August 22, 2003. (Swedish 1-m Solar Telescope (SST) operated by the Royal Swedish Academy of Sciences, Oddbjorn Engvold, Jun Elin Wiik, Luc Rouppe van der Voort)



The total solar eclipse of February 16, 1980 was photographed from Palem, India, by a research team from the High Altitude Observatory of the National Center for Atmospheric Research. The photograph of the solar corona was taken with a camera system developed by Gordon A. Newkirk, Jr. This specialized instrument photographs the corona in red light, 6400 A -- through a radially graded filter that suppresses the bright inner corona in order to show the much fainter streamers of the outer corona in the same photograph. (Rhodes College, Memphis, Tennessee / High Altitude Observatory (HAO), University Corporation for Atmospheric Research (UCAR))

The planet Venus is seen by NASA's TRACE satellite, at the start of its transit across the sun on June 8, 2004. (NASA/TRACE)

A view of a sunspot and granules on the Sun's surface, seen in the H-alpha wavelength on August 4, 2003. (Swedish 1-m Solar Telescope (SST) operated by the Royal Swedish Academy of Sciences, Göran Scharmer and Kai Langhans, ISP)


An animation of the sun, seen by NASA's Extreme ultraviolet Imaging Telescope (EIT) over the course of 6 days, starting June 27, 2005. (Courtesy of SOHO/EIT consortium)

Hinode (formerly known as Solar-B) successfully captured a massive solar flare on 13 December 2006. It was one of the largest flares occurring in that period of solar activity minimum. (JAXA/NASA/PPARC)



On November 8, 2006, Mercury is seen, beginning a transit in front of the Sun. (NASA/TRACE)

This TRACE 171Å-wavelength image from November 11, 2006 shows a sizeable active region at the east limb of the Sun (rotated clockwise 90 degrees so north is to the right) just as it rotates onto Earth-facing hemisphere. Notice the low-lying dark structures of filaments at the leading edge of the region, some "levitating" dark material on the right-hand side of the region, and the small ephemeral region towards the lower right. (NASA/TRACE)

The Sun, observed on May 22, 2008. With the Sun persisting in a near-minimal state of activity, only a few small regions of some activity are seen on the disk. The cell-like appearance is formed by the multitude of small clusters of magnetic flux that are collected in the downflow regions of the supergranular network of convective motions. (NASA/TRACE)

TRACE 171Å image of an erupting solar filament above Active Region 9077 on July 19, 2000. Filaments are concentrated bundles of magnetic field filled with relatively cool gas, suspended in the solar corona. When they become unstable, they can erupt, triggering coronal mass ejections and solar flares. The dark material here is relatively cool, while the bright material is hotter than a million degrees. As this hot material cools, it condenses and drains down the lines of magnetic field in the corona much like beads moving along a wire, a process some scientists refer to as "coronal rain." (Caption courtesy Dan Seaton, Photo courtesy Dick Shine, NASA/TRACE)




